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Abstract: The concept of multiset generalises the classical set, and so multigroup is an algebraic structure of multiset.
In this paper we study the concept of centralizer and normalizer of a group under the context of multiset. The closure
of these concept was studied under union, intersection, arithemetic addition, compposition and arithmetic
multiplication among others. We have also shown that a centralizer and normalizer is not empty and are sub multi
group of a multi group alongside defining the normal sub multi group of a multi group.
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1. INTRODUCTION

Multisets seems to generalized the Cantorian sets ([1],[7],[81,[9],[10],[13],[14]). It was first suggested by N.G, de Bruijn
([3]) in a private communication which opposes the basic principle that an element can belong to a set only once. This study
generated the study of group theory under multiset perspective which we called multi group ([5],[11],[12]).

Research is ongoing concerning multigroup as it began by a good number of researchers up untill Tella and Daniel, (2013),
and was improve by Nazmul et al, (2013), Ejegwa and Ibrahim, (2017) worked on much of the properties of the classical
group theory under multiset contaxt Some of the research work done is ranging from multiset operation of multi group,
homomorphic nature of multi group, sub multi group and normal sub multi group, Abelian multi group, Centre of a multi
group among others. ([15],[16],[17],[18])

This paper seeks to extend and to reconsider in a different perspective the study of centralizer, and normalizer of a multi
group with an intension to study more results on it. That is, the operations on, the sub and normal sub multi group of these
concepts and their properties of. In addition to this section we present some preliminary definitions, notations and the
introductions of some of the definitions of our terms in chapter two. In chapter three we present some basic results on the
concepts. We summarise our work in chapter four and then conclude.

2. PRELIMINARY DEFINITIONS AND NOTATIONS

Definition 2.1[1]. An mset A over the set X can be defined as a function C4: X - N = {0,1,2, ... } where the value C,(x)
denotethe number of times or multiplicity or count function of x in A. For example, Let A = [x,x,x,y,y,V,2, 2], then
CA(x) = 3, CA(y) = 3, CA(Z) = ZCA(X') =0=>x $ A.

The mset M over the set X is said to be empty if Cy,(x) = 0 for all x € X. We denote the empty mset by @. Then Cy(x) =
0,vx €eX.if C4(x) > 0,thenx € A.

Definition2.2[1]: The cardinality of a mset M denoted |[M| or card (M) is the sum of all the multiplicities of its elements
given by the expression card(M) = Y ex ca(x) .

Definition 2.3[2]: Let M be an mset drawn from a set X. The support set of M denoted by M* is a subset of X and M* =
{x € X: Cyy(x) > 0}. that is M* is an ordinary set. M* is also called root set.
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Definition 2.4[1]: Equal msets. Two msets A and B are said to be equal denoted A = B if and only if for any objects x €
X, C4(x) = Cg(x). This is to say that A = B if the multiplicity of every element in A4 is equal to its multiplicities in B and
conversely. Clearly, A = B =A* = B* , though the converse need not hold.

For example: let A = [a,a, b, b,c] and B = [a,a,b.b, b, c,c] where A* = B* = {a,b, c} but A + B.

Definition 2.5[1] Submsets: Let X be a set and let A and B be msets over X. A is a submset of B, denoted by A € B or A 2
B, if C4(x) < Cg(x) forall x € X. Also if A € B and A # B, then A is called proper submset of B denoted by A c B. In
other words A c B if A € B and there exist at least one x € X suchthat C,(x) < Cg(x). We assert that an mset B is called
the parent mset in relation to the mset A.

Definition 2.6[1]: Regular or Constant mset: A mset A is called regular or constant if all its elements are of the same
multiplicities, i.e for any x,y € A such that x # y, C4(x) = C4(¥).

Definition 2.7[1]: The notations A and V:[6]. The notations A and V denote the minimum and maximum operator
respectively for instance C,(x)AC4(y) = min{C,(x), C4(y)} and C4(x)VC,4(y) = max{C,(x), C4(y)}.

Definition 2.8[9]: Union (U) of msets.Let A and B be two msets over a given domain set X. The union of A and B denoted
by A U B is the mset defined by C,,5(x) = max{C,(x), Cx(x)},

That is object x occurring a times in A and b times in B occur maximum {a, b} times in A U B, if such maximum exist.
For example: Suppose A = [b, b, c,c,c,d],B = [a,b,c,c],then AUB = [b,b,c,c,c,d].

Definition 2.9[9]:Intersection (N) of msets. Let A and B be two mset over a given domain set X. The intersection of two
mset A and B denoted by A N B, is the mset for which C,n5(x) = min{C,(x), Cz(x)}forall x € X.

In other words, A N B is the smallest mset which is contained in both A and B. That is an objects x occuring a times in A
and b in B, occurs minimum (a, b) timesin A N B.

From the above example, A N B = [b, ¢, c].

Definition 2.10[9]: Addition or sum of Mset. Let A and b be two msets over a given domain set A. The direct sum or
arithmetic addition of A and B denoted by A — B or AW B is the mset defined by C,4.5(x) = C4(x) + Cx(x) forall x € X.

That is, an object x occurring a times in A and b times in B, occurs a + b timesin A ¥ B.
Using the above example we conclude that, AW B = [a, b, b, b, ¢, c, ¢, c,d] clearly|lAuB|=|A U B| + |A N BI.

Definition 2.11[9]: Difference of msets.Let A and B be two mset over a given domain set X. then the difference of B from
A, denoted by A — B is the mset such that C,_g(x) = max{C,(x) — Cg(x),0}for all x € X. If B € A, then C,_g(x) =
Ca(x) — Cp(x).

It is sometimes called the arithmetic difference of B from A. If B € A this definition still holds. It follows that the deletion
of an element x from an mset A give rise to a new mset A’ = A — x such that €,/ (x) = {C4(x) — 1,0}.

Definition 2.12[8]: Symmetric Difference. Let X be a setand A, B a mset over X. Then the symmetric difference, denoted
AAB, is defined by Cyap(x) = |C4(x) — C4(x)].

Definition 2.13[8]:Compliment in msets:Let G = {4,, 4,, ... } be a family of msets generated from the set X. Then, the
maximum mset Z is defined by C,(x) = max,e;Ca(x) for all A € G.Complement of an mset A, denoted by A4, is defined

by

A=7Z—Aand Cz(x) = {C;(x) — C4(x), for all x € X} where Z is a universal mset.

Theorem 2.14[8]. Let A and B be any mset then the following holds:

(M (AUB)* = A*UB*

(i) (AnB)*=A*nB*

Theorem 2.15 [11]. Forany M € M(X), M* = (M*)* = (kM)* for any k € N such that k > 1.

Page | 43
Paper Publications



https://www.paperpublications.org/
https://www.paperpublications.org/

ISSN 2350-1022

International Journal of Recent Research in Mathematics Computer Science and Information Technology
Vol. 9, Issue 2, pp: (42-54), Month: October 2022 — March 2023, Available at: www.paperpublications.org

Theorem 2.16[11]: LetM,N e M(X), MS N > M" C N~

Definition 2.17[6]: Let X be a group. An mset A over X is said to be a multigroup (mgroup for short) over X if the count
function C,(x) satisfied the following conditions:

() Calxy) = C4(x) AC4(Y)V x,y € X.
(i) Ca(x™1) = Ch(x)Vx € X
It follows immediately that:
CixH=C(x)VxeX
We denote the set of all mgroups over X by MG (X).
Theorem 2.18[5]: Let X be a group. If G isa mgroup over X, then
(i Cs(e) = C;(x),V x € X and e identity in X.
(i) Ce(x™) = Ce(x),Vx,Vn €N.
(iii) Colx)=C(x),VxeX
(iv) G=G"1
Definition 2.19[5]; Composition and Inverse. Let A, B € MG (X), then we call
(i) A o B as the composition between two mgroups defined as
Chop(x) =V{C,(0) ACg(2):y,z€ X D yz =x}and
(i) A~ is called the inverse of mgroup A and defined as C,-1(x) = C4(x~1) for all x € X.
Theorem 2.20[5]. Let A, B € MG (X), then the following assertions holds:
0] [A7 ]t =4
(i) ACB=A1cB?
(iii) (AeB)y'=B"1o4?!
(iv) [Nier A" =Nie; [A7]
v) [Uier Al ™" =Useq [477]
(vi) (AoB) oC=A0(BoC)
Theorem 2.21[5]. Let A,B € MG(X). Then An B € MG(X).
Theorem 2.21[5]. Let A,B € MG(X). Then AUB ¢ MG(X).
Theorem 2.22[17]: If A,B € MG(X), then the sum of A and B is a multigroup of X.
Theorem 2.23[17]: Let A € MG (X) and if x,y € X with C4(x) # C4,(¥), then
Calxy) = C4(yx) = Ca()NC,(¥)
Theorem 2.24[17]: Let A € MG (X) and B be a nonempty submultiset of A. Then the following statements are equivalent.
() B is a submultigroup of A.
(i) Cy(yx) = Cg(x)ACx(y) and Cz(x™1) = Cz(x)V x,y € X.
(iii) Ce(xy™) = Cg(X)NCz(¥)V x,y € X.
Definition 2.25[5]: Let A € MG(X) and if V x,y € X, we defined a commutative multigroup or an Abelian multigroup as

Ca(xy) = Cy(yx).
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For example; If X ={e,a,b,c} be a commutative group then let A ={e,a,b,c},33,. Hence A is an Abelian or
commutative multigroup.

Theorem 2.26[5]: Let B be a commutative multigroup of a group X. Then,
(i) Ce([x,y]) = Cp(e).
(i) Cp([x,y]) = Cp(x).
3. CENTRALIZER AND NORMALIZER OF A MULTIGROUP
Definition 3.1: Let M be a multigroup over a group X. Then the centralizer of M, denoted C(M) and defined
C(M) ={x € X/ Cy(xy) = Cy(xy) Vy € X}.
Example: Suppose the group X = {0,1,2} = Z; and let M € MG (X), thatis M = {0,1,2};, ;. Clearly C(M) is can be shown.
Thus C(M) is a the centre of the multigroup M.
We denote C(M) as the class of all centralizers of a multigroup.
Proposition 3.2: Let M € MG (X). Then the centre of M, C (M) is a subgroup of X.
Proof: Let Cy,(x) # @. Then at least e € C(M). Now let x,y € C(M).
Since Cy([x,y]) = Cy(e) and for all x,y € X.
Consequently, Cy, ([x,y]) = Cy(e) = C,(xyx~y™1)
> Cy(xy) ACy(x™'y™h)
= Cy(ex ™) ACy(yy™)
= Cy(e) ACyle)
= Cy(e)
Again, let x,y € C(M) we want to show that xy € C(M) and if x € C(M) then x~1 € C(M).
Now
Cu([x,y]) = Calxyx~1y™)
> Cy(xy) A Cy(x~ty™)
= Cy(xy) A Cy(xy)™
= Cy (xy)\Cy (xy)
= Cy(xy)
This implies that xy € C(M) and
Cor ([, x71]) = Cy(xxx™1x1)
> Cp(xx) ACpy(x™1x7D)
= Cy(xx ™) TACy(xx )71
= Cp(x™1x) A Cpy(x™1x)
= Cy(e) ACy(e)
= Cy(e)
Showing x~1 € C(M). Hence C(M) is a subgroup of X.
Proposition 3.3: Let M,N € MG(X).If MnNN € MG(X) then C(M) N C(N) € C(M).
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Proof: Let M € MG(X). Then Cp (xy) = Cyy(x) A Cyy(y) and Cyy (%)™t = Cy(x) V x,y € M.
N € MG(X). Then Cy(xy) = Cy(x) A Cy(y) and Cy(x)™* = Cy(x)V x,y € N.
Now, Cynw(xy) = A{Cuan (X), Cunn (¥)}
2 MICu () A Gy, [Cy () A Cy ()]}
2 Cy (%) A Cy(PINCy (x) A Cy(¥)
= [Cu CONCy D] A [Cy (DACy ()]
= Cunn ) ACyan (v)
And Cyay ()™ = Cyan ()
Therefore M N N € MG (X).
For C(M) N C(N) € C(M),
Then Ceanncan ®Y) = {Ceanncan G ACcanncan )}V x,y € M.
2 N[ Cen @) A Ceany O] [Ceqny () A Ceany O]}
= Ceany () A Coany P ACeny () A Cony (V)
= [Cery CINCequy O] A [Ceqany DI ACeany )]
= [Ceany O ACey DA Ceny COACe iy ()]
= Ceanyneany WACeanncay ()
= Cenynevy) ¥x)
Therefore C(M) N C(N) € C(M).
Proposition 3.4: Let M € MG (X) then C(M) € MG (X).
Proof: Since M € MG (X), then M* isagroupand V x,y € X.
Now Cp, (xy) = Cpy(x) A Cy(y) and Cp (%)™ = Cy(x) V x,y € M. Also C(M) € MG(X) shows that
C(M)* is the centralizer of the group M then
Ceany(xy) = Ceuy () ACeany(¥) @and Coapny ()™ = Cony(x) YV x,y € X.
Hence C(M) € MG (X).
Proposition 3.5: Let M,N € MG(X).If MUN € MG(X) then C(M) U C(N) € C(M).
Proof: Let M € MG (X). Then Cy(xy) = Cy(x) A Cyy(y) and Cyy (%)™t = Cy(x) V x,y € M.
N € MG(X). Then Cy(xy) = Cy(x) A Cy(y) and Cy(x)™1 = Cy(x)V x,y € N.
Now, Cyun (xy) = V{Cuyun (), Cuun ()}
= V{[Cy () A Cu)], [Cy () A Cy ()]}
2 Cy(x) A Cy(PVCy(x) A Cy(y)
= [Cu CINCyIVICy COACy ()]
# Cyon () VCyun (v)
Therefore M UN ¢ MG (X).
For C(M) U C(N) & C(M),
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then Ceanucany (xy) = {CC(M)UC(N) CY)NCemnyuen (xy)} Vx,y€EM.
2 V{[Cean () A Ceany O] [Ceqan () A Cey O]}
= Ceouy(X) A Coany IV Ceany () A Coony ()
= [Cen CONCey D]V [Ceony PIACeny )]
= [Ceony O ACey DV Ceny COACe iy ()]
= Ceanuewy M VCeanucwy )
# Ceanucv) ¥x)
Therefore C(M) N C(N) ¢ C(M).
Remark: If M* is an abelian group and M € MG (X). Then C(M) = M.
Proposition 3.6: Let M,N € MG(X).If M + N € MG(X) then C(M) + C(N) € C(M).
Proof: Let M € MG(X). Then Cp, (xy) = Cyy(x) A Cy(y) and Cyy(x)™t = Cy(x) Vx,y € M.
N € MG(X). Then Cy(xy) = Cy(x) A Cy(y) and Cy(x)™t = Cy(x)V x,y € N.
Now, Cin(xy) = {Cy(xy) + Cy(xy)}
= {[Cu () A Cy (] + [Cy(x) ACyOD D}
= Cy () A Cy()+Cy () A Cy(y)
= [CuCINCy ()] + [Cy(DACy (V)]
= Cu+n CONCyn (V)
And Cy iy ()71 = Cayan (%)
Therefore M + N € MG (X).
For C(M) + C(N) € C(M),
then Ceqany+con (49) = {Cean+can CIACean+eay IV 2,y € M.
= {[Cequn () + Cean G [Cean &) + Ceany O]}
= Cey () A Coany V) +Cony(x) A Coeny (v)
= [Cequy CIACe ey ()] + [Cean I ACeny )]
= [Cean OINCeany O] + [Coan @ ACean ()]
= Cecany+covy D ACeany+cny ()
= Ceuy+covy) (V%)
Therefore C(M) + C(N) € C(M).
Proposition 3.7: Let M,N € MG(X). If M.N € MG(X) then C(M).C(N) € C(M).
Proof: Let M € MG (X). Then Cy (xy) = Cp(x) A Cyy(y) and Cpy (%)™t = Cy(x) Vx,y € M.
N € MG(X). Then Cy(xy) = Cy(x) ACy(y) and Cy(x)™1 = Cy(x)V x,y € N.
Now, Cyy(xy) = {Cy(xy). Cy(xy)}
= {[Cu () A Cy (D] [Cy () Ay}
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= Cu(x) ACy(x).Cy () A Cy(Y)
= [Cu (IACy (] [Cy Ay (V)]
= Cun(ACun (¥)
And Cy y ()7t = Cyn(x)
Therefore M. N € MG (X).
For C(M).C(N) € ¢(M),
then Ceny.cony(xy) = {CC(M)_C(N) CONCemy.covy (y)}v X,y €M.
2 {[Ceqny (- Cey G A[Ceqan - Ceany O]}
= Coany () A Ceany)- Cony () A Cony ()
= [Cean CNCe @y (] [Cen GINCewy 3]
= [Cean OIACey O] [Cen CONCewy ()]
= Cean.can OACean.con ()
= Cey.conyx)
Therefore C(M).C(N) € C(M).
Proposition 3.8: Let M,N € MG (X). If MoN € MG(X) then C(M)oC(N) € C(M).
Proof: Let M € MG (X). Then Cy(xy) = Cp(x) A Cyy(y) and Cy (%)™t = Cy(x) Vx,y € M.
N € MG(X). Then Cy(xy) = Cy(x) A Cy(y) and Cy(x)™t = Cy(x)V x,y € N.
Now, Cion (xy) = {Cy(xy)oCy(xy)}
= {[Cu () A Cy(W]o[Cy () A Cy(1}
= Cy () A Cy(x)oCy () A Cy(y)
= [Cy (DACy () ]o[Cy (DAY (V)]
= Cuon () N\Con (V)
And Cyon ()™ = Cayon (x)
Therefore MoN € MG (X).
For C(M)oC(N) € ¢(M),
then Ceanocany(¥) = {Ceanoca CINCeanocany @)Y x,y € M.
> {[Ceqy ()0 Coqny D A[Cean D 0Cey ) ]}
= Ceuy(x) A Coany (V) 0Ccary(X) A Coany (v)
= [Cean CONCewy (D]o[ Ceny DIACeny )]
= [Cean OMNCeany )]0 Cean IACen ()]
= Ceanocv)y M NCenyoc vy (X)
= Ceanocn) (%)
Therefore C(M)oC(N) € C(M).
Proposition 3.9: Let M, N € MG (X), then C(M)oC(N) < C(MoN).
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Proof: Letm € C(M) and n € C(N), forall x € X.
Now Cyon ((mn)x) = V{Cy (¥)ACy(2) Vy, z € X, mnx = yz}
= V{Cy(mnxz=Y)ACy(2) Vz € X, mnx = yz}
= V{Cy(nxmz=HYACy(2) Vz € X, mnx = yz}
= V{C,y(WACy(2) Vy,z € X,nxm = yz}
= V{Cy()ACy(y nxm) Vy € X,nxm = yz}
= V{Cy(W)ACy(y~txnm) Vy € X,nxm = yz}
= V{C,y(WNCy(2) Vy,z € X, xmn = yz}
= Cyon (x(mn))
Similarly, Cyon (x(mn)) = Cpon ((MN)x).
Hence mn € C(MoN).
Thus C(M)oC(N) € C(MoN).
Proposition 3.10: Let M € MG(X), then C(M) < X.
Proof: It is obvious that C(M) # @ and since at least e € C(M). Let m,n € C(M). We want to show that mn € C(M).
Then Cyy(mn) = Cpy(nm) = C,y(M)ACy () = C,y(MAC, (M)
o Cy(mm™inn™1) = Cy(e)
< Cy([m,n]) = Cy(e)
Thus mn € C(M).
Also, let m € C(M). Then Cy(Jm,n]) = Cy(e) Yn € X . Hence
Cy(m™4,n]) = Cy(mn~tm™1n) = Cy(mn~tm nmm™1)
= Cy(m~tm Inmm™m) = Cy,([n,m])
= Cy(Imn]™) = Cy(Im,n]) = Cy(e)
Thus m™t € C(M).
Therefore C(M) € X.
Remark: Let M € MG (X), then C(M) = A*. If A is commutative or regular multigroup. Otherwise C(M) < A.
Proposition 3.11: Let A € AMG(X) be abelian, then
(i) Ca(lx, y]) = Cale)
(i) Ca([x,y]) = C4(x)
Where (e) is the identity element of X and [x, y] is the commutator of x and y in X.
Proof: (i) Letx,y € X such that x and y commutes with each other. Now
Callx, y]) = CaCx ™y~ ay) = Gy~ hy)
> Ca(x ) AC(yy)
= Ca(e) N Cy(e)
= Ca(e)
= Ca([x,y]) = Cy(e) and

Ca(e) = Colxyx ™1y ™) = Co((xyx~tye)
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= Ca(Ceyx~ Ty (eyx~ty ™)
> CyCeyx "ty ™) A Culayx Tty ™)
= GOy )
= Cu(e) = C4([x, yD.
Hence C,([x,y]) = C,(e).
(M) Callx, yD) = Cu(x ™ty xy) = Calx My xy) = Ca(x™) A Ca(y ™ xy)
= Cu(x) A Cy(x) = Cy(x)
Thus C,([x, ¥]) = C4(x)
Proposition 3.12: Let A € MG(X) be abelianand n € N. Then C,((xy)™) = C,(x™y™) forall x,y € X.
Proof: Let x,y € X. We have C,((xy)™) = C4(xy ... xyxyxy) = Cu(xy ... xyxy*x[x,y])
> Cu(xy o xyxy?x) ACy([x,y]) = Cu(x?y .. xyxy?) = Cu(x2%y ... xy3x) = Cu(x%y ... xy3x[x,y])
> Ca(x%y o xy®x) 2 0 2 Cu(x" Tyay™ ) = Cu(xc" ey [x, yU ) 2 Gy M) = G (aaty™).
= Ca((xy)™) = Co(x™y™).
Also,

Cy(x™y™) = Cu(x™ 1y™x) = Cu(x™ Lyxy™ [y 1, x]) = Co(x Lyxy™™ ) = - = Cuxy ... xyxy?x) =
Calxy .. xyxyxy[x, y]1) = C4(xy ... xyxyxy[x, y]) = C4((xy)™).

= Ca(x™y™) = Ca((xy)™).

Hence C,((xy)™) = C4(x™y™).

Definition 3.13: Let 4, B € MG (X), such that A < B, then we defined the Normalizer of A in B as
N@A) ={x e X/ Cu(x7'yx) = () Vy € X}

Example: Let X = {e,a,b,c} be a group under the multiplicative operation such that ab = ¢,bc = a,ac = band a? =
b? =c*=e. Also let B ={e,a,b,c},3,, be a multigroup and A = {e,a,b,c}3,11 be a submultigroup B. Then the

normalizer of A, N(A) is given by;
Cs(a™tba) = C4(aba) = C4((ac)c) = C4(ca) = C,(b) = 1 by definition.
Hence N(A) is a normalizer of A in B.

We denote the class of all normalizers of A in B as N(4).

Proposition 3.14: Let M be a multigroup and if M; and M,are normal sub multi group of M. Then N(M,) n N(M,) €

N(A).
Proof: Since N(M,), N(M,) € N(A), we have

Cnaupy (2™ yx) = Cyup¥) Vx,y € M*
Cneuy (X~ 'yx) = Cyu,y ) V X,y € M*
Then Cyuyynnuy) (X1 yx) = /\{CN(Ml)(x_lyx)v CN(MZ)(x_lyx)}
= /\{CN(MI)(y)' CN(MZ)(y)}
= Cnampy) W ANCyay) V) VX € My, y € My" N M,

= Cnaupnnmy)Y) VX € My%y € Mi" N My*
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Hence N(M,) N N(M,) € N(4).
Proposition 3.15: Let M be a multigroup and if M; and M,are normal submultigroup of M. Then N(M,) U N(M,) ¢
N@).
Proof: Since N(M,), N(M,) € N(A), we have

Cnenp (X1 yx) = Cyuy () VX, y € M*

Cneuy (X1 yx) = Cyu,y) ¥) Vx,y € M*
Then Cyonyyunony) (1 ¥x) = V{Cyuy (x 7 yx), Cyquy (xyx) }

= V{Cnauy @), Cuauy )}
# Cyaup DVCyupy (V) Vx € M*,y € M;" UM,"
# Cnaupunm) V) VX €M%y € M;" U My®

Hence N(M;) U N(M,) & N(A).
Proposition 3.16: Let M be a multigroup and if M, and M, are normal submultigroup of M. Then N(M,) + N(M,) €
N(A).
Proof: Since N(M,), N(M,) € N(A4), we have

CN(Ml)(x_lyx) = Cyaup(Y) Vx,y €EM”

Cnvamy (X 71yx) = Cyupy () V X,y € M
Then Cyuy)+neuy (X~ 1yx) = {CN(MI)(x‘lyx) + CN(MZ)(x‘lyx)}

= {CN(MI)(Y) + CN(MZ)(y)}
= Cyup @) + Cyeuy ) VX E My",y €M™ + My
= Cyup+nmy V) VX € M,y € My" + My”

Hence N(M,) + N(M,) € N(4).
Proposition 3.17: Let M be a multigroup and if M; and M,are normal submultigroup of M. Then N(M,). N(M,) € N(A).
Proof: Since N(M,), N(M,) € N(A4), we have

CN(Ml)(x_lyx) = Cyaup() Vx,y €EM”

Cnauy (21 yx) = Cyon,y) ) Vx,y € M*
Then Cyou,) vy (™ Tyx) = {CN(Ml)(x‘lyx). CN(MZ)(x‘lyx)}

= {Cvaup ). Cyany )}
= Cymp - Cyupy ) V x € M*,y € M{".M,"
= Cnaup vy () VX € M,",y € M{".M,"

Hence N(M,).N(M,) € N(4).
Proposition 3.18: Let M be a multigroup and if M; and M, are normal sub multigroup of M. Then N(M,)oN(M,) € N(4).

Proof: Since N(M,), N(M,) € N(A), we have
CN(Ml)(x_lyx) = Cyaup() Vx,y €EM”
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Cneuy (X 1yx) = Cyu,y) ) Vx,y € M*

Then,
Cnpyonmy) X 1yx) = V{CN(Ml)(x_lyx)ACN(MZ)(x_lyx) Vx €M,y €M oM, , xtyx =y}
= /\{CN(Ml)(y)/\CN(MZ)(y) Vx €M,y €M "oM," ,x'yx = 3’}

= Cyamponmy V) VX € My",y € My oM,"
Hence N(M,)oN (M;) € N(4).
Proposition 3.19: Let A € MG(X), and N (A4) a normalizer of A over X. Then the normalizer of A is a subgroup of X.
Proof: N(A) # @. Then at least e € N(A). Let x,y € N(A). Now C,(x~1yx) = C4(y) and C,(z " 1yz) = C,(y) Vy € X.
Consequently, C,((x2) " Yy(xz)) = Co(z 1x yxz)

= Ca(x"'yx)NCy(z 7 yz)
= CAMNG ()

=C(y)
Then xz € N(4).

Again C;(x tyx) ! = C(xy~tx™) = Cu(xyx™1) = C4(y) = x~1 € N(A).
Proposition 3.20: A is a normal sub multigroup of B if and only if N(4) = X.
Proof: Let A be a normal sub multigroup of B,thenvn € X
Ca(n™an) = Cu(n~12)n) = C4((n"')x) = Cue.x) = C4(x)
Hence C,(n~1xn) = C,(x) and so n € N(4).
Therefore N(A) = X.

Conversely, suppose N(4) = X,V x,n € X. We want to prove that A is a normal subgroup of B. Then e € A, C,(e) =
Cs(e.x) bute =n"1n

Cy(nIn)x) = C,(n"txn) Vx € X,n € N(4)
Hence C,(n™1xn) = C,(x).
That is A is a normal sub multigroup of B.
Remark: Let A be a normal sub multigroup of B, then N(4) = M = N.
If M ={x€e€X/Ci(xy(yx)™1) = C,(e) Vy € X} and
N={xeX/Cy(xy)=C,(yx)Vy€EX}
Proposition 3.21: Let M € MG(X),and M; € M, M, < M, then N(M;) n N(M;) € N(M, N M;).
Proof: Let y € N(M;) and y € N(M,) which implies y € N(M,) forany y € N(M;) n N(M;) forany x.y € X, we get

Crtyom, (xyx ™) = Coy, (xyx"HACy, (xyx™)

= Cu, (Cex™)y)AChr, (Gex™)y)
= Cy, (e.y)\Cy,(e.y)
= Cu, INCy, )
= CMlan »

Thus, y € N(M; N M,).
Hence N(M;) n N(M;) € N(M; N M,).
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Corollary 3.22: Let M € MG (X), and M; € M, M, S M, such that Cy, () = Cy,(e). Then
N(M,) N N(M;) = N(M; 0 M,).
Proof: Recall that

NM,) ={x € X/ Cu(xy) = Cu(yx) Yy € X}

={x € X/ Cylxyx~'y™") = Ca(e) Yy € X}
Let y € N(M; n M,). Then by definition

Cutye, cyx ™1y ™1 = Coy, eyx ™ty ™D ACy, Ceyx 1y ™)
= Cyy, ()A\Cy, (€)
= Coryur, (€)
Which implies y € N(M,) and y € N(M;). Thus y € N(M; n M,) since
Cu, (xyx~ty™) = Cy, (e) = C4(xy) = C4(yx) and similarly in the case of B, Cy, (e) = Cy, (e).
Hence N(M,) N N(M,) = N(M; n M,).
Corollary 3.23: Let M € MG (X),and M; € M,M, € M. Then
N(M,) N N(M,) = N(M;0M,).
Proof: Lety € N(M; N M,), thatisy € N(M,) and y € N(M;). Then forall x € X
Cryom, ) = V{CMl(a)/\CMl(b) va,b € X,y = ab}
= V{Cy, (x"*ax)ACy, (x*bx) Ya,b € X,y = ab}
= V{Cy, ()ACy, (d) Yc,d € X, x 1yx = cd}
= Cymyom, (x"tyx)

= Cyyom, V) = Crryom, X1 yx).

The inequality holds sincey = ab = x~tabx = cd = ab = (xcx 1) (xdx™1) and since a = xcx™! and b = xdx™?!
implying xax™! = c and xbx~! = d. Again

Crtyom, (X 71yx) < Cogyom, X (71 y2)x ™) = Copyom, )
S0, Cyryom, V) = Coyyom, (X1 yx).
Thus  Cu,om, ) = Caryom, (X~ yx).
Hence y €e N(M;0M,).
Therefore, N(M,) N N(M;) = N(M;0M,).
Remark: Suppose M € MG(X),and M; € M,M, € M. If M; € M,, then N( M,) S N(M,).
4. CONCLUSION

Centralizer and Normalizer of the classical group were studied under the perspective of multiset and an extended results
from the existing ones were established. The closure of each of the concept under union, intersection, arithmetic addition,
and arithmetic multiplication, composition were also studied. Finally, we have also shown that a centralizer and normalizer
of a multi group is not empty and are sub multi group of a multi group. We have also define the normal sub multi group
of these concepts and some results were put down. Other aspect of the classical group can also be studied under multiset
perspecrtive.
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